What is Al?

words or phrases

What is AI?

What does AI do?

But how?

standard pipeline

What is an algorithm?

Activity: Draw a cat

Potential stakeholders and values?

What does AI do?

mimics human behavior

What about Machine Learning?

standard pipeline

Black Box?

standard pipeline

Machine Learning types

task-driven vs. data-driven

supervised vs. unsupervised

supervised ML

supervised ML

Classic ML algorithm: Decision Tree

stepwise selection of classifying feature(s)

Activity: Make a decision tree

Different? What is the best?

Stable? Optimize?

Classic ML algorithm: Random Forest

simplified: choose classes and max-vote

Random Forest and regression task?

Linear Regression and regression task?

supervised ML

econometrics? supervised ML

the two cultures

Data Modeling: econometrics

assumptions on Data

(data come from a generating process)

assumptions on Data

Algorithmic Modeling: ML

the two cultures

Data Modeling: econometrics

assumptions on Data

(data come from a generating process)

assumptions on Data

Algorithmic Modeling: ML

machine learning \sim "lazy" econometrics ? in the context of linear regression

machine learning is about specific procedure to learn the model to fit the data

machine learning is about specific procedure

to learn the model to fit the data

we train
the model

machine learning is about specific procedure

to learn the model to fit the data

new Algorithm?

supervised ML

supervised ML

supervised ML

one algorithm inside another algorithm

Loss: sample illustration

https://developers.google.com/machine-learning/crash-course/linear-regression/loss

Loss: sample illustration (interactive example)

https://developers.google.com/machine-learning/crash-course/linear-regression/parameters-

How to automate? What new Algorithm?

Gradient Descent: sample illustration (interactive example)

https://developers.google.com/machine-learning/crash-course/linear-regression/gradientdescent-exercise

What about Machine Learning?

specific procedure and algorithms to match input with output

What about Deep Learning?

What about Deep Learning?

Neural Networks

What about Deep Learning?

Deep Neural Networks

What is a Neural Network?

Neural Network ~ "the laziest" algorithm in ML?

linear regression as Neural Network?

an example

Neural Network as linear regression

$$F(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + 1 \cdot b$$

Neural Network as logistic regression

Neural Network with one hidden layer

https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter3_pytorchneural-networks-pt1.html

Neural Network with one hidden layer

Hidden Layer

https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter3_pytorchneural-networks-pt1.html

Deep Neural Network

Detailed view: <u>https://www.tomasbeuzen.com/deep-learning-with-</u> pytorch/chapters/chapter4_neural-networks-pt2.html

Neural Network (interactive exercises)

https://developers.google.com/machine-learning/crashcourse/neural-networks/interactive-exercises

What about Generative Al?